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Benzenesulfonamide is a known inhibitor of carbonic
anhydrase (CA). 8-[4-(Aminosulfonyl)phenyl]-BODIPY is de-
signed as an inhibitordye conjugate for turn-on fluorescence
sensing of CA, and binds specifically to bovine carbonic
anhydrase in water with Ka = 1.04 « 0.25 © 107M¹1 (Kd =
0.96 © 10¹7M) with concomitant increase in the fluorescence
intensity of the former by a factor of 2.52.8 because of the
steric constraint imposed on the probe by the enzyme.

Boron-dipyrromethene, the so-called BODIPY 1 (only the
core structure is shown, Chart 1),1 is a class of fluorescent dyes
having a number of attractive features.2 In particular, the high
and micropolarity-independent emission efficiency of BODIPY
makes it an important tool in various bioimaging applications.3

In BODIPY, complexation with the difluoroboron unit effec-
tively locks or rigidifies the dipyrromethene structure, affording
a fluorescent chromophore. In this regard, it is interesting to note
that the free base dipyrromethenes such as bilins (e.g., bilirubin),
which are only weakly fluorescent, at best, in fluid media,
become highly fluorescent in frozen solutions4 or when bound to
the target proteins in bacteria.5

An interesting feature of 8-phenyl-substituted BODIPY 2 is
the dependence of its fluorescence on rigidification. The parent
compound 2a (R1 = R2 = H) exhibits considerably smaller
fluorescence yields compared with 8-unsubstituted BODIPY
1.2,6 This is because the rotation of the phenyl ring in 2a easily
converts the conformation of the excited state of the molecule
from radiative to nonradiative, i.e., from the bright (radiative),
metastable, twisted conformer to the more stable, dark (non-
radiative) one exhibiting coplanarity of the phenyl ring and
BODIPY framework with higher electron delocalization.6

Introduction of methyl substituents at the ortho positions of
the phenyl ring (2b) or on the 1 and 7 positions of the BODIPY
core (2c) or on both (2d) suppresses the nonradiative decay by

restricting the internal rotation of the phenyl ring and increases
the fluorescence quantum yields,2,7,8 which approach unity.9

Viscosity is an external factor that governs the ease of rotation; a
relevant derivative 2a-1 is used as a molecular rotor to probe the
microviscosity of live cells.10 We imagine that complexation,
e.g., with an enzyme, is another external way to impose steric
constraints on the phenyl-BODIPY probe, where the phenyl
group, acting as an inhibitor of the enzyme, mediates the
interaction (Scheme 1).11 We report, herein, an example of the
fluorescence sensing of enzymes along this line.

Carbonic anhydrase was the enzyme of choice here. It is
a zinc enzyme, and its enzymatic activity is inhibited by a
variety of ligands including benzenesulfonamide. Benzenesul-
fonamide-BODIPY, or 8-(4-aminosulfonylphenyl)-BODIPY 3
(Scheme 1), was obtained according to the general method of
preparing 8-aryl-BODIPY (Scheme 2);2 the condensation of
4-formylbenzenesulfonamide with 2mol of pyrrole in the
presence of CF3CO2H to give dipyrromethane 4 (step a), the
oxidation of 4 with DDQ in CH2Cl2, the subsequent complex-
ation of the resulting dipyrromethene with BF3O(CH2CH3)2
and (CH3CH2)3N (step b) to give an inhibitor-substituted
BODIPY 3.12

Examination of the emission spectra of benzenesulfon-
amide-BODIPY 3 in common solvents indicates that they are
practically independent of solvent polarities from water (con-

Chart 1.

Scheme 1. Complexation of probe 3 with enzyme CA.

Scheme 2. Preparation of probe 3: a) pyrrole, CF3CO2H, Ar,
rt, 67%; b) DDQ, CH2Cl2, Ar, rt; and then, BF3O(CH2CH3)2,
(CH3CH2)3N, Ar, rt, 47%.
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taining 1% v/v DMSO) and DMF and DMSO to CH2Cl2 and
CHCl3 (data not shown).13 However, as expected, they strongly
depend on viscosity.10 Figure 1 shows the spectra of probe 3
in methanolglycerol mixtures; the fluorescence intensities
increase with the increasing volume percentage of glycerol,
i.e., with increasing viscosities.

We then moved on to the interaction of the inhibitor-
substituted BODIPY 3 with bovine carbonic anhydrase (CA).
In the presence of CA in water (HEPES buffer at pH 7.2)
containing 1% v/v DMSO, the fluorescence intensity at 524 nm
of probe 3 (4.0 © 10¹7M) increases, without any notable shift
in the emission maxima, in a [CA]-dependent manner, until
reaching a plateau at around [CA] = 1.0 © 10¹6M (Figure 2).
The saturation behavior observed is consistent with 1:1 3CA
complexation with an association constant of Ka = 1.04 «
0.25 © 107M¹1 (Kd = 0.96 © 10¹7M) obtained from least-

squares fitting (solid line in Figure 2) and a fluorescence-
enhancement or light-up factor fCA(+)/fCA(¹) in the range 2.5
2.8.14

Control measurements indicate that (1) lysozyme, as the
inert reference enzyme, has practically no effect on the fluores-
cence spectra of probe 3 (Figure 3), (2) the fluorescence spectra
of 4-carboxyphenyl-BODIPY, as the inert reference pigment,
are hardly affected by enzyme CA (Figure 4), and (3) the
CA-induced fluorescence enhancement of probe 3 at [3] =
[CA] = 4.0 © 10¹7M disappears almost completely (>98%) in
the presence of excess benzenesulfonamide, which competes
for the binding site in CA. These results confirm that enzyme
CA specifically recognizes probe 3 as a benzenesulfonamide
derivative and that the 3CA complexation is reversible. The
dissociation constant, Kd = 0.96 © 10¹7M, for the 3CA com-
plex, is roughly one-order of magnitude lower than those
reported for the benzenesulfonamidebovine carbonic anhydrase

Figure 1. Fluorescence spectra of probe 3 (4.0 © 10¹7M;
excitation at 502 nm) in methanolglycerol mixtures with
different volume percentages of glycerol at 35 °C.

Figure 2. Dependence of fluorescence intensities at 524 nm of
probe 3 (4.0 © 10¹7M; excitation at 502 nm) on the concen-
trations of bovine carbonic anhydrase (CA) in water (HEPES
buffer at pH 7.2) containing 1% DMSO at 35 °C. Each point is
the average of three measurements, and error bars represent
standard deviations.

Figure 3. Fluorescence spectra of probe 3 (4.0 © 10¹7M;
excitation at 502 nm) in the presence of different amounts of
lysozyme in water (HEPES buffer at pH 7.2) containing 1%
DMSO at 35 °C.

Figure 4. Fluorescence spectra of 8-(4-carboxyphenyl)-
BODIPY (4.0 © 10¹7M; excitation at 502 nm) in the presence
of different amounts of bovine carbonic anhydrase (CA) in water
(HEPES buffer at pH 7.2) containing 1% DMSO at 35 °C.
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complexes; Kd = 0.91 © 10¹6 and 0.44 © 10¹6M according to
affinity capillary electrophoresis (ACE)15 and kinetic16 studies,
respectively, and may be in accordance with the observation that
p-substituted benzenesulfonamides give more stable complexes
with CA than the parent (unsubstituted) compound does.1620

The CA-induced light-up of probe 3 is consistent with its
rigidification, particularly the rotation of the phenyl ring in the
binding pocket of the enzyme (Scheme 1). In light of the
fluorescenceviscosity correlation (Figure 1), the light-up factor
of fCA(+)/fCA(¹) = 2.52.814 suggests that the microviscosity felt
by probe 3 associated with the enzyme corresponds to that of a
60:40 mixture of methanol and glycerol. Rotation of the phenyl
ring or the BODIPY core in the bound probe seems to be
moderately prevented. However, we should not delve deeper
into this argument, since the restriction of rotation is not the sole
factor governing the fluorescence enhancement. Even when the
rotation is completely prevented, it is the relative conformation,
i.e., the dihedral angle of the phenyl ring and the BODIPY core,
that determines the light-up property of the probe.

In summary, benzenesulfonamide-BODIPY 3 strongly and
specifically binds to enzyme CA with a concomitant light-up of
the former by a factor of 2.52.8. Benzenesulfonamide is the
inhibitor that mediates the CABODIPY association. BODIPY
is a uniquely micropolarity-independent fluorophore.2 As far
as this is true, the present light-up of the probe must be a
consequence of the steric constraints imposed on it by the
enzyme. It is also important to note that probe 3 shows no sign
of nonspecific binding to lysozyme, since nonspecific binding is
often a problem in protein sensing.21 Upon nonspecific (on-
surface) binding, the microviscosity as well as the micropolarity
of the probe is expected to change. In order to gain a deeper
insight of the present selectivity, we need to learn more about the
microviscosity of the protein surface and the sensitivity of the
conformation of the probe. Additional work is now under way in
our laboratories to build up the present strategy used for different
inhibitorenzyme combinations.
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